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SUMMARY

High discrimination algorithms based on numerical techniques such as eigen analysis are
currently being considered for use in future antenna array systems. In addition to being

computationally expensive, such algorithms are only able to achieve significantly enhanced
within-beam resolution at high signal to noise ratios. However, if the detected signals are

found only within a limited frequency range of region of space, or if the data is
oversampled, a pre-processing transform may be applied to the data. This leads to a

reduction in the size of the data matrix, enables subsequent processing to be accelerated,
and lowers the threshold signal to noise ratio required for within-beam resolution. In the
spatial domain, the pre-processor is a beamformer. A previous memo has shown how this

may be designed using singular vectors of the array calibration matrix. In the current
document it is demonstrated by Monte Carlo trials that similar results may be obtained

using a conventional beamformer.
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1. INTRODUCTION

It is now clear that electrically steered antenna arrays will increasingly replace mechanically
aligned dishes in applications ranging from communications and passive detection to active
radar and sonar. In addition to advantages such as beam agility and improved reliability,
the discrete sampling of the spatial aperture opens up the possibility of sophisticated high

discrimination algorithms. Under suitable conditions, such techniques enable the detection of
multiple independent signal sources, within the usual aperture-limited beamwidth limitation
and below conventional sidelobe levels.

The potential benefits of high discrimination techniques are well recognised. So too are
their shortcomings, which include high computational complexity and the requirement of
high signal to noise ratios for within-beam resolution. In particular, since many such
methods employ eigen analysis of data covariance matrices, the data processing burden is
of order n 3 where n is the number of antenna elements or sub-arrays.

Under certain conditions, as shown in an earlier report [1], by performing additional
operations of order (kxn), the dimension of the data covariance matrix may be reduced
from (nxn) to (kxk-) where k<n. The subsequent eigen analysis thus takes O(k3)
operations, and the overall process may be significantly accelerated. In [1] it was
demonstrated that such processing can also enable resolution of two independent signals at
fractional beamwidth spacing from lower signal to noise ratios than previously reported.
Benefits were also shown for resolution of signals using arrays subject to calibration errors.

The method described in [1] was referred to as an eigenvector projection method (EPM),
being based on a transformation of the data using eigenvectors related to the antenna
calibration matrix. Its use was illustrated for the case of prior knowledge that all the
signals to be detected were confined to a localised region of space. It was shown that, in
this case, the transformation is equivalent to a beamforming or spatial filtering operation,
and that the improved signal detection capability results from rejection of "out-of-band"
noise components. The current report demonstrates that similar results may be obtained
using carefully placed conventional beams, and is intended as a supplement to EP].

Section 2 introduces the basic data model. Section 3 reviews the popular MUSIC algorithm
[2], and section 4 provides a brief review of EPM (and a similar pre-processor based on
conventional beamforming). Section 5 presents a number of experimental results obtained
from Monte Carlo trials of algorithms acting on data from a linear array, to illustrate the
similar effects of the EPM and beamforming pre-processors. Results obtained using a
polygonal array are also included in order to demonstrate the generality of the technique.

2. THE DATA MODEL

The usual data model employed [I] is as follows

d(t) = M f(t) + _(t) (I)

where f(t) is a vector representing the input which is to be reconstructed, M is a linear
transformation matrix, L(t) is a vector sample of zero mean Gaussian white noise, and
.(t) is the resulting data vector, or "snapshot", at time t. We assume for simplicity that

the matrix M (often referred to as the array manifold [2]) is known to within a negligible
calibration error [3]. For example, in the case of an array of n sensors expected to
receive signals from independent point sources, M will be an (nxN) matrix, whose N
columns (denoted m(oi), i = I to N) represent the independent spatial transformations of
calibration signals from N possible discrete angles, 0i. Thus, M contains a representative
subset of the continuum of possible received waveforms: it provides calibration information
about the array rather than details of specific signal sources. If f(t) represents the complex
amplitudes of the signals associated with m independent point sources, as measured at a
given instant, d(t) will be given by the linear combination of m corresponding columns of
M, scaled by the signal amplitudes and perturbed by additive noise. From a reconstruction
of f(t), we hope to locate the m sources and estimate their powers.
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3. METHODS OF DATA ANALYSIS

The usual method of solution is to use the calibration matrix, M, to form a set of
correlation filters which are "matched" to each of the potential signal directions, 6i, and
to evaluate

P(ei,t) = If'(01 ,t)1 2 
= mH(0i) d(t) H(t) M(0i) / {mH(0i) M(8i)} , i = 1 to N. (2)

The superscript H denotes the complex conjugate (Hermitian) transpose, IKI 2 denotes the
squared magnitude of the individual elements of the vector, x_, and mT(0e) is a row of the
matrix MH. This is a simple estimate of the instantaneous spatial power distribution of the
input, f(t). Such processing may be considered as "scanning" the data with the
beamforming weight vector, mH(oi). P(6,t) has the familiar broad multiple lobed pattern of
classical analysis, with consequent poor discrimination of multiple signals, resulting from the
wide beamwidth and high sidelobes. If a sequence of P data snapshots has been taken
(represented by the matrix D), then we may average over time and evaluate

P(oi) = mH(0) D DH M(Oi) / {mH(Oi) m(oi)) , i = 1 to N. (3)

A well-known high discrimination technique, MUSIC [2], makes use of the so-called
"noise subspace" eigenvectors, EN, corresponding to the (n - m) smallest eigenvalues of
the (nxn) covariance matrix, (D DH). The angular estimate is then

P(8i) = m ( , i = 1 to N (4)

The normalisation term in the denominator of equations (2) and (4) allows for non-
uniform weighting of the gain vectors represented by the array manifold. The locations of
the minima of equation (4) are used to estimate signal directions-of-arrival.

4. BEAMFORMING PRE-PROCESSORS

4.1. EIGENVECTOR PROJECTION METHOD (EPM)

In [1] it was shown that, if M is defined only between angles 0. and 0+, then the
matrix (M M H ) has approximately k large eigenvalues, where k is the angle (0+ - 0)
measured in conventional beamwidths. The k corresponding eigenvectors, denoted Uk, may
be used as a pre-processing transformation of the data. The validity of such processing
rests on the assumption that the signal components in the data matrix may be sufficiently
accurately represented by the (kxP) matrix

C = UV D . (5)

Thus, we assume that components of the data which are suppressed by this projection are
indistinguishable from noise. This is the basis of the eigenvector projection method (EPM).

Clearly, finding E for use in equation (4) imposes a heavy processing burden if the sensor
array dimension n is large. If k < n, the noise subspace eigenvectors, FN, of the modified
data covariance matrix (C CH ) may be evaluated much more rapidly. A bounded solution
can then be calculated, via the MUSIC algorithm, as

P(0i) = mH0)U N  (I i = 1 to N', 0- 4 8i < 0+ .(6)
m '(0i Uk mUP i '

Here, Uk transforms the vectors FN back into the n-space of the array manifold. N' may
be less than N without loss of detail, since 0+ and a- are less than the maximum
possible non-ambiguous angles of arrival. Correct normalisation is maintained by using the
"modified" array manifold vectors, Up' m(oi), in the denominator. This is particularly
important in the use of EPM with certain other algorithms, such as Burg's MEM [4] and
the method of Kumaresan and Tufts [5]. Further details may be found in [1].

Signal powers and time-domain behaviour may be estimated [1,3] simply by replacing M
in the usual equations by A = (Ur M). Each identified signal direction is referenced to a
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particular column of A. If these columns are collected together and stored in a matrix A ,
the time series associated with each direction is a row of the matrix T, given by [1,3]

T = (A A,)- IAH C , (7)

and the signal powers may be estimated as the diagonal elements of the matrix

P = T TH (8)

If we assume that the additive noise, w(t), is spatially uncorrelated or "white", then, since
the operation defined by equation (5) is equivalent to spatial filtering [1], EPM
pre-processing will lead to a reduction in the total noise power in the data. As the Monte
Carlo simulation results described in [1] show, EPM pre-processing leads to more accurate
angular estimates as a result of this noise reduction. There is an improvement in both the
fidelity of extracted time series and the accuracy of the estimated powers, over results
from the equivalent "conventional" high discrimination processing. This occurs principally at
low signal to noise ratio, by virtue of the enhanced probability of resolution.

4.2. CONVENTIONAL BEAMSPACE METHOD (CBM)

EPM is equivalent to a spatial beamforming process, using the conjugate transpose of the
principal eigenvectors, UV, of (M MH) in place of the usual beam steering vectors
represented by columns, M(o1), of M. For the example of a linear antenna array with 16
equi-spaced elements, the vectors m(0i) have the form of truncated complex exponentials
(Fig. 1), and produce the "sinc" shaped beams illustrated in Fig. 2. The vectors Uk are
discrete prolate spheroidal functions [61 and are shown in Fig. 3 for the same array. The
"bearns" contributed by the eigenvectors each have a different pattern (Fig. 4).

If only a limited number of conventional beams or eigenvector beams are formed and
summed, the resulting overall beam patterns will differ. Fig. 5 illustrates this. Fig. 5a
shows a typical function applied to the data space by EPM. It assumes a 4 beamwidth
angular region of interest, using a 16 element 0.5 wavelength spaced linear array, and
k = 5. Fig. 5b shows the function obtained using five equally weighted conventional
beams, directed at -1.78, -0.89, 0, 0.89 and 1.78 beamwidths away from boresight. These
positions have been chosen such that the resulting pattern approximately resembles that of
the eigenvector processor. In filter terms, the choice of beam positions gives a trade-off
between in-band ripple and out-of-band rejection. We have not explored the effect of
using differently weighted or irregularly spaced beams. EPM has the advantage of providing
a secure basis for choosing the optimal maximum number of "beams", based on knowledge
of signal to noise. EPM also automatically places the "beams" to give a smooth "in-band"
response.

Although the angular estimates of signals, derived following EPM or CBM pre-processing,
are insensitive to the validity of the assumed angular frequency constraints, 0- and 0+,
the same is not true of the signal extraction and power estimation stages (equations (7)
and (8)). If significant signal amplitudes exist at unknown angles beyond these boundaries,
the estimates of power and time behaviour may degrade [1]. This is true for any high
discrimination algorithm which fails to locate one or more signals accurately, and is a
feature of the power estimation step rather than the angle estimation per se. It should be
possible to reduce such sensitivity by applying constrained adaptive cancellation techniques
to null signals in the sidelobes of the EPM filter during power estimation.

5. EXPERIMENTAL RESULTS

5.1. INTRODUCTION

The experimental results presented here confirm that both EPM and CBM can be designed
to give approximately equivalent benefit to the subsequent parameter estimation algorithm.
The results are taken from a series of Monte Carlo trials of well-known algorithms, acting
in combination with each of the pre-processors on simulated data. To emphasise the
generality of these methods, both linear and polygonal sensor arrays have been simulated.
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In section 5.2, the collection and analysis of the Monte Carlo data is outlined. Section 5.3
describes results obtained from analyses of data generated from a variety of typical two
source scenarios. Results obtained from high discrimination algorithms acting on the normal
covariance matrix are compared to those obtained from the same algorithms acting on the
reduced size covariance matrix output from EPM or CBM. A more comprehensive set of
results for EPM is presented in [I].

5.2. DATA COLLECTION AND ANALYSIS

Monte Carlo simulations enable comparison of the performance of algorithms, with and
without EPM or CBM, over many trials. Results are collected in terms of such parameters
as the bias and standard deviation of the angle and power estimates, the probability of
resolution and false alarm rate. Statistics are based on 100 trials of each algorithm at each
of a number of discrete angular separations and signal to noise ratios. The results are
presented in the same format as those of [1].

Fig. 6 is a summary of the procedure used in the collection and analysis of the statistical
data. During the Monte Carlo trials, the positions of all estimated angles of arrival are
recorded, together with the corresponding powers. When analysing this data, thresholds
may be set in angle or power in order to distinguish between correctly identified signals,
false alarms, and estimates which may be ignored. For example, Fig. 7 shows how
thresholds may be set in power and angle. Firstly a noise level power threshold is set, all
signals falling below this line being rejected. Signals above this threshold are assigned as
detections if the estimate of (angle, power) falls within the window defined by an angular
uncertainty, AO, and a power uncertainty, AP, each centred on the appropriate true signal
coordinate. All other detections are counted as false alarms. The statistical results
presented in the following sub-sections are all conditioned on resolution (detection of both
targets), as indicated in Fig. 6.

In the following sections, signal to noise ratio is measured in terms of the "array signal to
noise ratio" (ASNR) of one of the two targets. This is defined as ((instantaneous signal to
noise ratio at each element of the array) - 10 log1 0(n)).

5.3. MONTE CARLO RESULTS

5.3.1. LINEAR ARRAY

The results presented in Figs. 8 to 18 relate to the analysis of multiple snapshots of data
from a 16 element linear array with 0.5 wavelength element spacing. The dimension k
chosen for both the EPM and CBM pre-processors is equal to 5 throughout. The target
scenario consists of two random phase signal sources in the far field, separated by a
fractional bxamwidth. This beamwidth is the angle from the peak of the main lobe of a
matched filter (equation (2)) at the first target location, to the position of its first null.

5.3.1.1. TWO EQUAL POWER TARGETS CLOSE TO BROADSIDE

In this section, 0+ and 0 are set to t14.5 (!4 beamwidths), and the equal power signals
are located at broadside (perpendicular to the array) and at 0.1 beamwidths to one side.

Fig. 8 shows the variation of the performance statistics as a function of ASNR (the
theoretical integrated signal to noise power ratio for each of the two emitters). 16
snapshots of data have been used for each trial. The results, taken at 3dB signal to noise
ratio increments, are shown for the MUSIC algorithm acting on the 16x16 covariance
matrix (dot-dash lines) and for MUSIC acting on the EPM and CBM processed 5x5
covariance matrices (dotted and dashed lines, respectively). The solid line in the plot of
standard deviation is the Cramir Rao bound [7] for the problem, assuming uncorrelated
emitters. A noise power threshold of 10 log I (n) has been used, together with A = I
beamwidth and ,IP = 6dB (see Fig. 7).

In all three cases, as the ASNR rises, the probability of resolution increases (associated
with a peak in the false alarm rate), bias of the angle and power estimates tend to zero,

d- . .
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and the variance of the anglc estimates, var(01 ), tend towards the Cramer Rao bound. The
bias and variance results are plotted for the "left-hand" signal, and thus negative angular
bias indicates that the nulls of P(0) corresponding to the signals have moved further apart.

In addition to reducing the time taken for the computation of the eigenvectors by a factor
of approximately 32, we see that processing by either EPM or CBM has an effect on
performance which is roughly equivalent to a 5-10dB increase in array signal to noise
ratio. If the noise was distributed equally amongst all the available degrees of freedom
(and the signal was concentrated in the k primary degrees of freedom) before processing
by EPM or CBM, we might expect an improvement of approximately 5dB in this case,
and so the observed change seems reasonable. The behaviour of EPM/MUSIC is virtually
indistinguishable from that of CBM/MUSIC for the current choice of beam positions.

Fig. 9 shows a similar set of results to those of Fig. 8, for the case in which only 5
snapshots of data have been collected.

5.3.1.2. TWO UNEQUAL POWER TARGETS CLOSE TO BROADSIDE

High discrimination algorithms, of the type referred to in this report, enable the detection
of multiple signals within the beamwidth defined by the matched filter (equation (2)), and,
perhaps even more importantly, also allow the detection of targets whose powers fall below
the sidelobes of the conventional beamformer. We further expect to be able to resolve
signals of differing powers within the main beamwidth.

Fig. 10 compares the performance of MUSIC with that of EPM(k=5)/MUSIC and
CBM(k=5)/MUSIC acting on 16 snapshots of data. There are two signals, located at 0 and
0.1 beamwidths with respect to broadside. 0+ and 0 are again set to ±14.5' (±4
beamwidths). In this case, the ratio of the power of the signal at broadside to that of the
signal at 0.1 beamwidths is -20dB, and the ASNR scales in Fig. 10 correspond to the
lower power signal.

As in the previous section, the performance of the basic algorithm is improved through
the application of either EPM or CBM, by the equivalent of between 5 and 10dB ASNR.
It can be qpen from compariqnn with Fig. 8, for equal power signals, that there has been
a slight deterioration in overall performance for all three implementations in the present
case. The false alarm rate is slightly higher and the probability of resolution curve falls to
zero at slightly higher ASNR than in Fig. 8.

5.3.1.3. TARGETS FAR FROM BROADSIDE

Because the assumption that signals are confined to a region about the broadside position
is similar to one of spatial oversampling, it may appear strange to consider using EPM for
a field of view in which such oversampling cannot be assumed. However, looked at as a
spatial beamforming operation, this clearly should be possible. Thus, the singular values of
a calibration matrix limited by 0. = 30 and 0+ = 90 (a span of 4 beamwidths for the
16 element linear array) decline in a similar way to those of a calibration limited by
-0. = 0+ = 14.5 (4 beamwidths). Again, the maximum number of "significant" basis
vectors, Uk, can be determined from knowledge of the overall signal to noise ratio, and
an EPM filter defined. Fig. 11a shows the EPM spatial filter function created by taking
k = 5. The function is not as sharply confined to the region of interest as was the case
in Fig. 5a. However, if the assumed angle of view is valid, then this will not be a
problem. A CBM pre-processor may also be defined, using 5 conventional beams. In the
design used here, which has the spatial response shown in Fig. 11b, the beams are
directed at 4.2, 5.15, 6.1, 7.05 and 8 beamwidths from broadside.

Taking the above calibration, with two equal power independent sources located at 7.7 and
7.9 beamwidths (74.3 and 80.9") from broadside, Fig. 12 compares the performance of
MUSIC acting on the full 16x16 covariance matrix with that achievable via the 5x5
processed covariance estimates. Probability of resolution has improved as a result of the
EPM pre-processing, although by the equivalent of only a 2-3dB shift along the ASNR
axis, which is somewhat less than was the case for targets close to broadside. Probability
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of resolution when using CBM starts to increase at lower ASNR, but requires greater
signal power to reach 100%. In both cases, variance of the angle estimate has actually
increased. A more careful design of the CBM pre-processor could possibly match the
performance of EPM.

We note that the experiments described in 11] showed that behaviour in this fa,-from-
broadside region was strongly dependent on the high discrimination algorithm employed. It
was found for example, that the performance of MEM [4] could be significantly improved
by EPM. We should therefore also expect some improvement from use of CBM.

5.3.1.4. ARRAY CALIBRATION ERRORS

The particular high discrimination algorithms referred to in this report are known to be
sensitive to errors in the calibration of the antenna array, embodied in the matrix M.
Thus further simulations were carried out to investigate the effect of EPM pre-processing
under such circumstances. Data consisted of 16 snapshots from a 16 element linear array,
as in previous sections, but with random calibration errors of ±10%/0 in aalplitude and ±1%
in phase across the elements. These errors were chosen from independent rectangular
distributions. The particular weight set used for these simulations is given in Fig. 13.

For illustration in the present section, Figs. 14 and 15 show results obtained for two equal
power signals, located at 0 and 0.2 beamwidths away from broadside. Algorithms used on
the data from the mis-calibrated array were MLM 8,1], EPM(k=5)/MLM [1] and
CBM(k=5)/MLM for Fig. 14 and MUSIC, EPM(k=5)/MUSIC and CBM(k=5)/MUSIC for
Fig. 15. The field of view extended to ±14.5. The beams used by CBM were designed
from the assumed (error-free) calibration, rather than that used for generation of data.

The presence of errors in the array calibration has caused the performance of MLM
(Fig. 14) to deteriorate considerably. Probability of resolution reaches only around 0.5 for
ASNRs less than 60dB; false alarm rate is higher than in the accurately calibrated case (as
can be seen from results presented in (I]) and continues to rise with increasing ASNR;
standard deviation of the angle estimates declines only gradually with increasing ASNR; and
there is an almost constant bias of both the angle and power estimates. Pre-processing
using either EPM or CBM increases probability of resolution to greater than 0.9 by 40dB
ASNR, reduces the false alarm rate for the same thresholding procedure (although the
trend is still rising as ASNR increases), and reduces both standard deviation and bias.
Power estimation variance remains virtually unchanged after pre-processing.

Under the same circumstances, Fig. 15 shows MUSIC to be more robust, in that it is stil
possible to achieve 100% probability of resolution, and variance of the angle estimates
remains close to the Cramir Rao bound. Both EPM and CBM confer further gains in
performance.

An r.lternative representation of some of this data is given in Figs. 16 to 18. These take
the form of scatter diagrams. These represent power and angle estimates taken at selected
ASNRs, using MUSIC (Fig. 16), MLM (Fig. 17) and EPM/MLM (Fig. 18). True signal
coordinates are denoted by "0", whilst estimated coordinates are indicated by dots. Thus,
in Fig. 16, for example, the first panel shows the approximately uniform scatter of
estimates for the case of both (p1 , 6,) and (P 2, 62) equal to (0dB, 1.43"), a separation
of 0.2 beamwidths. Both signals are effectively indistinguishable from noise. As signal
powers increase, the estimates cluster more tightly, close to the true signal coordinates.
The bias of both angle and power estimates is clearly depicted. Fig. 17 clearly indicates
the almost constant variance with increasing ASNR which characterises the results from
MLM, and Fig. 18 shows how this is reduced if EPM is used ta pre-process the data.

It is worth noting that the results described here have been collected for a single
perturbed antenna calibration. More work needs to be carried out before general
conclusions regarding the relative robustness of algorithms can be derived with certainty.
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5.3.2. POLYGONAL ARRAY

In order to emphasise the generality of the EPM and CBM techniques, Figs. 20 and 21
show results obtained using MLM and MUSIC, and their pre-processed counterparts acting
on 16 snapshots of data from a 16 element circular array with a radius of 1.33
wavelengths. The characteristics of the EPM(k=5) and CBM(k=5) beamformers are shown
in Fig. 19. The angular inter-beam separation chosen for CBM was 18

Fig. 20 shows results obtained using MLM, EPM/MLM and CBM/MLM for the case of
two equal powered signals separated by 0.1 beamwidths (2.25 degrees). Fig. 21 shovs the
performance of MUSIC, EPM/MUSIC and CBM/MUSIC under the same circumstances.
Algorithm behaviour is clearly similar to that observed with linear arrays (section 5.3.1.1).

6. CONCLUSIONS

A substantial reduction may be achieved in the processing time required by modern high
resolution algorithms. This is achieved by means of a beamforming pre-processor. Design
of this processor may make use of eigenvectors related to the array manifold, or carefully
directed conventional beams. The eigen-based method, EPM, removes the need to make
decisions regarding beam placement and weighting, through the use of an information
theoretic result [1). In addition, the Monte Carlo results have demonstrated that such
pre-processing can significantly improve the ability of a number of high discrimination
algorithms to extract signal parameters from noisy data. Furthermore, beamforming
pre-processing has been observed to have a beneficial effect on data taken from an array
whose calibration was randomly perturbed. Finally, we have demonstrated, using a
non-linear array, that such processing is equally applicable to alternative array geometries.
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DATA COLLECTION AND ANALYSIS ALGORITHM

I. RECORD DATA:
FOR each emitter separation

FOR each signal to noise ratio
FOR each repeat

generate new data matrix
FOR each algorithm

RECORD angle and power estimates onto disc
NEXT algorithm

NEXT repeat
NEXT signal to noise ratio

NEXT emitter separation

2. ANALYSE DATA:
FOR each separation

FOR each signal to noise ratio
FOR each repeat

FOR each algorithm
FOR each angle estimate

test against thresholds in angle and power
assign targets to estimates
record positions and powers of resolved pairs

NEXT angle estimate
count total false alarms
count total resolutions

NEXT algorithm
NEXT repeat
FOR each algorithm

average probability of resolution
average false alarm rate

NEXT algorithm
NEXT signal to noise ratio
FOR each signal to noise ratio

FOR each algorithm
FOR each emitter

IF resolved THEN
calculate mean position
calculate mean power
calculate bias of mean from true position
calculate bias of power estimate
calculate standard deviation of angle estimates
calculate standard deviation of power estimates

END IF
NEXT emitter

NEXT algorithm

NEXT signal to noise
NEXT separation

Fia. 6. Mote Carlo data collection and oualysis procedures.
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Power, dB

S/N Threshold

Fngle, 0

Fig. 7. Two signals are indicated by 0 symbols. During data analysis, a power threshold may be set, below

which all estimates are assumed to be related to noise and are therefore ignored. All estimates above this

signal to noise threshold are then counted as either false alarms or true target detections. Signals are

assumed to be detected if the (angle, power) coordinates fall within the boxes defined by the true signal

coordinates, and AO and APow. Throughout the analyses presented in the present report, 56 = 1 beamwidth,

and APow W 6dB.
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Fig. 11. a) Spatial frequency filter function applied to data by EPM(k-.5), assuming angular constraints
given by uln(O.) - 0.5 md :in(O+) - 1.0 (indicated by vertical broken line) for a 16 elenesu 0.5 wevelength
opaced linear array. b) Spatial frequency filter function applied to daa by CBM(k.5), for he wne array.
Btes have been directed at 4.2, 5.15, 6.1, 7.05, dad 8 bedmwid" from broadside.
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assumed assumed perturbed perturbed

Element amplitude phase (rods) amplitude _hase trads)

1 1.0 0.0 0.917188 -1.204603x10-

2 1.0 0.0 0.978620 4.648638x10-
3 1.0 0.0 1.072075 -1.910583x10-2
4 1.0 0.0 0.934826 1.410884x10-2
5 1.0 0.0 0.999926 -2.143270xl0-
6 1.0 0.0 1.092877 -0.472322x10-
7 1.0 0.0 1.057702 0.350052x10-
8 1.0 0.0 1.036057 0.536220x10-
9 1.0 0.0 1.034596 3.968480x10- 2

10 1.0 0.0 0,935603 4.797734x10- 2

11 1.0 0.0 0.954129 3.087766x10- 2

12 1.0 0.0 0.951808 2.046928x10
- 2

13 1.0 0.0 0.936404 -3.966099x10
- 2

14 1.0 0.0 0.901499 -5.989737x10- 2

15 1.0 0.0 0.994882 -1.169561x10- 2

16 1.0 0.0 0.952047 3.292482x10- 2

Fig. 13. Assuned mid actual array calibrations ued to demonstrae sensitivity of algorithms to calibration
error. The errors are uniformly distributed, and correspond to a maximum of IM0% in awplitude and t1%
in phase.
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Fig. 19. a) Spatial frequecy filter fwtion applied in te plow of the aray to data by EPM(k-5),
aunq nglar eonsaints Siva by ui(O..) -0.707 aid si.(8,) - 0.707 (indicated by vertical broken lines)

for a 16 elemnt ..3 wavelength radius circular array. b) Spacial frequncy filter function applied to data

by CBM(k-), foe the tame array. Beans have bern directed at 18 intervals across the desired region.
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